Risk Measures when Changing the Calculation Currency

Risk Day 2014, ETH Zurich

Peter Antal
I heard we don't pass the solvency test...

Now we do: I changed the calculation currency!
Internal Models in a Multi Currency Setup

Relevant currencies in an Internal Model:

• underlying currency:
 – currency in which a balance sheet position is denominated

• calculation currency:
 – for aggregation purposes, the exposures denominated in the various currencies need to be converted into a common currency

• reporting currency:
 – currency chosen to report risk figures
Converting to the Calculation Currency

For simplicity we consider a balance sheet with only two currencies:

domestic currency : d

foreign currency : f

which are converted into an aggregation currency a.

To calculate the capital position at time T, we need the corresponding (random) exchange rates at time T: $e_{d,a}$, $e_{f,a}$

The capital position at time T, expressed in currency a, is given by

$$\hat{X}_a := [A_d - L_d] \cdot e_{d,a} + [A_f - L_f] \cdot e_{f,a}$$

where A and L stand for the Assets and Liabilities in the respective currency.
Observations

- Required Solvency Capital - calculated as TailVar or Var - depends on the calculation currency

- As a consequence, the Solvency Ratio (required capital / available capital) also depends on the calculation currency

What about Capital Adequacy Tests?
Capital Adequacy Tests

VaR based:

\[P(X < 0) \leq \alpha \]

Corresponds to testing whether the probability that the insurer will not be able to meet its obligations is below \(\alpha \).
Example: Solvency II (\(\alpha = 1/200 \))

Expected Shortfall based:

\[ES_{\alpha}(X) \leq 0 \]

Roughly speaking, it corresponds to testing whether in the worst \(\alpha \times 100 \) percent states, the company will be able to meet its obligations on average.
Example: SST (\(\alpha = 1/100 \))
Currency Invariance of Capital Adequacy Tests

VaR based capital adequacy tests are currency invariant, i.e.

\[P(X_d < 0) \leq \alpha \iff P(e_{d,f} X_d < 0) \leq \alpha \]

But the analogous result does not hold for Expected Shortfall based capital adequacy test!

This was first observed by Artzner, Delbaen & Koch-Medina in 2009 (ASTIN Bulletin 39), but the result got largely unnoticed in the risk management community.
Example

- Discrete Setup (e.g. "simulation approach"): 1000 possible states of the world, each with the same probability
- The worst 1% states (in term of economic value), expressed in the domestic currency are given by

<table>
<thead>
<tr>
<th>State</th>
<th>(\omega_{10})</th>
<th>(\omega_9)</th>
<th>(\omega_8)</th>
<th>(\omega_7)</th>
<th>(\omega_6)</th>
<th>(\omega_5)</th>
<th>(\omega_4)</th>
<th>(\omega_3)</th>
<th>(\omega_2)</th>
<th>(\omega_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_d)</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>-10</td>
<td>-20</td>
<td>-30</td>
<td>-40</td>
</tr>
</tbody>
</table>

\[ES_{0.01}(X_d) = -5 < 0 \rightarrow \text{Company is solvent} \]
Example (cont)

Exchange rate model: \(e_{d,f}(\omega_1) = e_{d,f}(\omega_2) = 2, \quad e_{d,f}(\omega_i) = 1, \forall i > 2 \)

i.e. the exchange rate is 1, except in the two worst outcomes where we observe a strong devaluation of the foreign currency vs. the domestic currency.

<table>
<thead>
<tr>
<th>State</th>
<th>(\omega_{10})</th>
<th>(\omega_9)</th>
<th>(\omega_8)</th>
<th>(\omega_7)</th>
<th>(\omega_6)</th>
<th>(\omega_5)</th>
<th>(\omega_4)</th>
<th>(\omega_3)</th>
<th>(\omega_2)</th>
<th>(\omega_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_d)</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>-10</td>
<td>-20</td>
<td>-30</td>
<td>-40</td>
</tr>
<tr>
<td>(X_f)</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>-10</td>
<td>-20</td>
<td>-60</td>
<td>-80</td>
</tr>
</tbody>
</table>

\[ES_{0.01}(X_f) = 2 > 0 \rightarrow \text{Company is insolvent} \]
Is this relevant?

• For our example we needed a model where a currency depreciates at the time where the worst economic losses happen.

• We have evidence from history that such events are not implausible:
 – in the 2008 financial crisis, the US Dollar appreciated against almost all currencies
 – after the Tohuku Earthquake the Japanese Yen depreciated for a short period and started appreciating a month later at a very rapid rate
References

© 2014 Swiss Re. All rights reserved. You are not permitted to create any modifications or derivative works of this presentation or to use it for commercial or other public purposes without the prior written permission of Swiss Re.

The information and opinions contained in the presentation are provided as at the date of the presentation and are subject to change without notice. Although the information used was taken from reliable sources, Swiss Re does not accept any responsibility for the accuracy or comprehensiveness of the details given. All liability for the accuracy and completeness thereof or for any damage or loss resulting from the use of the information contained in this presentation is expressly excluded. Under no circumstances shall Swiss Re or its Group companies be liable for any financial or consequential loss relating to this presentation.