Asset Demand and Ambiguity Aversion

Chiaki Hara and Toshiki Honda

Kyoto University and Hitotsubashi University

Swiss-Kyoto Symposium
November 21, 2013
Introduction

Model

First Main Result: Generalized Mutual Fund Theorem

Second Main Result: Decomposition Theorem

Special Cases: One for Two Mutual Funds

Another Special Case: Factor Model

Conclusion
Outline

Introduction

Model

First Main Result: Generalized Mutual Fund Theorem

Second Main Result: Decomposition Theorem

Special Cases: One for Two Mutual Funds

Another Special Case: Factor Model

Conclusion
Introduction

- Axiomatization of ambiguity aversion in decision makers’ preferences and utilities has been one of the hottest topics in decision theory.
- There is now a growing literature to study its implications on optimal portfolios and asset prices.
- This paper belongs to this strand of literature.
- We prove a generalized mutual fund theorem and characterize optimal portfolios as the investor becomes extremely ambiguity-averse.
- As a corollary, we give a rigorous sense in which the $1/N$-portfolio is optimal.
Setup

- We use the smooth model of ambiguity aversion by Klibanoff, Marinacci, and Mukerji (2005, *Econometrica*).
- Unlike the utility functions of Gilboa and Schmeidler (1989, *JMathE*), the utility functions of KMM allow us to see what would happen to optimal portfolios when investors become more ambiguity averse but remain to be equally risk averse.
- A single consumption period with the CARA-Normal assumption, but also with ambiguous expected asset returns.
- Use the same model as the model of portfolio selection in Maccheroni, Marinacci, and Ruffino (2013, *Econometrica*).
First Result: Generalized Mutual Fund Theorem

- If there were no ambiguity, the mutual fund theorem would hold: every investor’s optimal portfolio of risky assets would be a positive multiple of the single mutual fund.
- With ambiguous asset returns, a single mutual fund is, in general, not sufficient to cater for all investors.
- However, each investor’s optimal portfolio can be represented as a linear combination of some K vectors, where $1 \leq K \leq N$.
Second Result: Decomposition of Optimal Portfolios

- An expected-utility maximizer’s optimal portfolios can be decomposed into two parts:
 1. Vanishes as the degree of ambiguity aversion goes to infinity.
 2. Remains even when the degree of ambiguity aversion goes to infinity.

- Useful in the analysis of a factor model, in which a small number of factors determines the asset returns.
Outline

Introduction

Model

First Main Result: Generalized Mutual Fund Theorem

Second Main Result: Decomposition Theorem

Special Cases: One for Two Mutual Funds

Another Special Case: Factor Model

Conclusion
Assets and Ambiguity

- N risky assets with gross returns X and a riskless asset with R.
- Ambiguity is represented by an N-dimensional random vector M.
- Assume that

$$
\begin{pmatrix}
M \\
X
\end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix}
\mu_M \\
\mu_M
\end{pmatrix}, \begin{pmatrix}
\Sigma_M & \Sigma_M \\
\Sigma_M & \Sigma_X
\end{pmatrix} \right),
$$

Then $X|M \sim \mathcal{N}(M, \Sigma_X - \Sigma_M)$.
- Each realization of M specifies a model, and the investor is faced with model uncertainty on expected returns.
Examples of μ_M, Σ_X, and Σ_M

- Take the Bayesian view and stretch the meaning of the “principle of insufficient reason.”

 $\mu_M = \delta 1$ and $\Sigma_M = \begin{pmatrix} \sigma^2 & \kappa \\ \kappa & \sigma^2 \end{pmatrix}$.

- Imagine that asset prices were observed during the last T periods and take the frequentialist’s view.

 $\Sigma_M = \frac{1}{T} \Sigma_X$.
Utility Functions

- Utility function over random consumptions Z:

$$U_{\gamma, \theta}(Z) = E \left[u_\gamma \left(u_\theta^{-1} \left(E \left[u_\theta(Z) | M \right] \right) \right) \right],$$

where $u_\theta(z) = -\exp(-\theta z)$ and $u_\gamma(z) = -\exp(-\gamma z)$.

- If $\theta = \gamma$, then $U_{\gamma, \theta}$ is a CARA expected utility function.

- If $Z = a^\top X + bR$ for some portfolio $(a, b) \in \mathbb{R}^N \times \mathbb{R}$, then $U_{\gamma, \theta}(Z) = -\exp(-\gamma V_{\gamma, \theta}(a, b))$, where

$$V_{\gamma, \theta}(a, b) = \mu_M^\top a + Rb - \frac{\gamma}{2} a^\top \Sigma_M a - \frac{\theta}{2} a^\top (\Sigma_X - \Sigma_M) a.$$

This is a mean-variance utility function of MMR.
Portfolio Choice

- Initial wealth $W \in \mathbb{R}$
- The utility maximization problem is

$$\max_{(a,b) \in \mathbb{R}^N \times \mathbb{R}} U_{\gamma,\theta}(a^\top X + bR)$$

subject to $1^\top a + b \leq W$.

- The optimal Portfolio is

$$a = (\gamma \Sigma_M + \theta (\Sigma_X - \Sigma_M))^{-1}(\mu_M - R1).$$

If $\theta = \gamma$, then

$$a = \frac{1}{\gamma} \Sigma_X^{-1}(\mu_M - R1).$$
Define

\[\eta \equiv \frac{\gamma}{\theta} - 1 \quad \text{and} \quad Q \equiv \Sigma_X^{-1} \Sigma_M. \]

- \(\eta \) represents the degree of ambiguity aversion in excess of risk aversion.
- \(Q \) is roughly equal to the ratio of the variance of asset returns due solely to ambiguity to the total variance of these asset returns.

Define \(\alpha : (-1, \infty) \to \mathbb{R}^N \) by

\[\alpha(\eta) = (I_N + \eta Q)^{-1} \Sigma_X^{-1} (\mu_M - R1) \]

Then the optimal portfolio \(\alpha \) is equal to \(\theta^{-1} \alpha(\eta) \).
First Main Result: Generalized Mutual Fund Theorem

Outline

Introduction

Model

First Main Result: Generalized Mutual Fund Theorem

Second Main Result: Decomposition Theorem

Special Cases: One for Two Mutual Funds

Another Special Case: Factor Model

Conclusion
Theorem (Generalized Mutual Fund Theorem)

If $\mu_M - R 1 \neq 0$, then there are a $K \in \{1, 2, \ldots, N\}$ and K eigenvectors v_1, v_2, \ldots, v_K of Q with corresponding non-negative eigenvalues $\lambda_1 < \lambda_2 < \cdots < \lambda_K$ such that

$$
\alpha(\eta) = \sum_{k=1}^{K} \frac{1}{1 + \lambda_k \eta} v_k.
$$
Proof of the Generalized Mutual Fund Theorem

1. The variance-ratio matrix Q need not be symmetric, but there is a basis (w_1, w_2, \ldots, w_N) of \mathbb{R}^N with each w_n an eigenvector of Q.
2. There is a $(c_1, c_2, \ldots, c_N) \in \mathbb{R}^N$ such that $\alpha(0) = \sum_{n=1}^{N} c_n w_n$.
3. Partition the set $\{c_1 w_1, c_2 w_2, \ldots, c_n w_n\}$ by the corresponding eigenvalues and consider the sums of the form $\sum_n c_n w_n$ where the sum is taken over each subset of a common eigenvalue.
4. Denote these sums by v_1, v_2, \ldots, v_K and order them with the increasing order of the corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_K$.
5. Since $\alpha(\eta) = (I_N + \eta Q)^{-1} \alpha(0)$ and each v_k is an eigenvector of $(I_N + \eta Q)^{-1}$ with eigenvalue $(1 + \eta \lambda_k)^{-1}$, the theorem is established.
Implications of the Generalized Mutual Fund Theorem

- The K mutual funds v_1, v_2, \ldots, v_K can cater for all investors, regardless of the values of η, who believe $\mathcal{N}(\mu_M, \Sigma_M)$.

- If $\lambda_k > 0$, then the demand for v_k converges to zero as $\eta \to \infty$, though the speed of convergence depends on the value of λ_k.

- If $\lambda_1 = 0$, then the demand for v_1 does not depend on η. This is because $v_1 \in \text{Ker} \, Q = \text{Ker} \, \Sigma_M$ and v_1 involves no ambiguity.

- If $\Sigma_M = \lambda \Sigma_X$, then $Q = \lambda I_N$. Hence $\alpha(0)$ is an eigenvector of Q. Thus $K = 1$ and the original mutual fund theorem holds.
Application 1: Heterogeneous Investors

There are I investors $i = 1, 2, \ldots, I$ having utility functions U_{γ^i, θ^i}. Let

$$
\eta^i = \gamma^i / \theta^i - 1
$$

Proposition

Suppose that $\eta^1 = \eta^2 = \cdots = \eta^I$. Then:

1. The demands a^i for risky assets are positive multiples of one another.

2. Denote the common value of the η^i by η. Define θ and γ by

$$
\theta^{-1} = \sum_i (\theta^i)^{-1} \text{ and } \eta = \gamma / \theta - 1.
$$

Then $\theta^{-1} \alpha(\eta) = \sum_i a_i$.

▶ A single mutual fund is sufficient for all investors.
▶ The representative investor’s risk tolerance is equal to the sum of the investors’ risk tolerances, and the degree of extra ambiguity is equal to each individual investor’s counterpart.
Outline

Introduction

Model

First Main Result: Generalized Mutual Fund Theorem

Second Main Result: Decomposition Theorem

Special Cases: One for Two Mutual Funds

Another Special Case: Factor Model

Conclusion
Decomposition of Optimal Portfolios

When it is possible to form ambiguity-free portfolios, as in models of the home bias puzzle, the following theorem is useful.

Theorem (Decomposition of Optimal Portfolios)

1. *There are two negative semidefinite matrices* Σ_1 *and* Σ_2 *such that* $\Sigma_1 + \Sigma_2 = \Sigma_X$, *$\mathbb{R}^N$ is the direct sum of* Row Σ_1 *and* Row Σ_2, *and* Row $\Sigma_1 = $ Row Σ_M.

2. *For each such* (Σ_1, Σ_2), *there exist a unique* $(w_1, w_2) \in $ Row $\Sigma_1 \times$ Row Σ_2 *such that* $\mu_M - R1 = w_1 + w_2$, *and a unique* $(v_1, v_2) \in $ Ker $\Sigma_1 \times$ Ker Σ_2 *such that* $\Sigma_2 v_1 = w_2$ *and* $\Sigma_1 v_2 = w_1$.

3. *For each such* (v_1, v_2), $\alpha(0) = v_1 + v_2$ *and* $\alpha(\eta) \rightarrow v_1$ *as* $\eta \rightarrow \infty$.
Implications of the Decomposition Theorem

- In symbols,

\[
\alpha(0) = \Sigma_X^{-1}(\mu_M - R1)
\]

\[
\iff \Sigma_X \alpha(0) = \mu_M - R1
\]

\[
\iff (\Sigma_1 + \Sigma_2)(v_1 + v_2) = w_1 + w_2
\]

\[
\iff \Sigma_1 v_2 + \Sigma_2 v_1 = w_1 + w_2
\]

(by this theorem) \iff \Sigma_1 v_2 = w_1 \text{ and } \Sigma_2 v_1 = w_2.

- An expected-utility-maximizing investor’s portfolio \(\alpha(0) \) can be decomposed into two portfolios \(v_1 \) and \(v_2 \). \(v_1 \) involves no ambiguity.

- If \(\Sigma_M \) is positive definite, then \(v_1 = 0 \) and \(\alpha(\eta) \to 0 \) as \(\eta \to \infty \).
Application 2: Asymptotic Portfolio Weights

If Σ_M is positive definite, then $\alpha(\eta) \to 0$ as $\eta \to \infty$.

How about the portfolio weights?

Proposition

If Σ_M is positive definite and $\mathbf{1}^\top \alpha(\eta) > 0$ for every sufficiently large η, then, as $\eta \to \infty$,

$$
\frac{1}{\mathbf{1}^\top \alpha(\eta)} \alpha(\eta) \to \frac{1}{\mathbf{1}^\top \Sigma_M^{-1}(\mu_M - R\mathbf{1})} \Sigma_M^{-1}(\mu_M - R\mathbf{1}).
$$
Implications of the Asymptotics

- The portfolio weight of an extremely ambiguity averse investor is similar to the portfolio weight of the expected-utility CARA with mean vector μ_M and covariance matrix Σ_M.
- The relevant covariance matrix is not Σ_X but Σ_M.
- If, at the same time, $\theta \to 0$ so that
 \[
 \frac{1^T \alpha(\eta)}{\theta} \to c \in R_{++},
 \]
 then the demands for risky assets do not vanish and has weights $\Sigma_M^{-1}(\mu_M - R1)$ in the limit:
 \[
 a = \theta^{-1} \alpha(\eta) \to c \Sigma_M^{-1}(\mu_M - R1).
 \]
Application 3: $1/N$-portfolio

Proposition

Suppose that there is a $\delta \in \mathbb{R}$ with $\delta \neq \mathbb{R}$ such that $\mu_M = \delta 1$, and there are a $\sigma \in \mathbb{R}_{++}$ and a $\kappa \in \mathbb{R}$ such that $-(N-1)^{-1} < \kappa / \sigma^2 < 1$ and

$$\Sigma_M = \begin{pmatrix} \sigma^2 & \kappa \\ \kappa & \sigma^2 \end{pmatrix}.$$

Then, as $\eta \to \infty$,

$$\frac{1}{\alpha(\eta)^\top \beta(\eta)} \to \frac{1}{N} 1.$$

If, at the same time, $\theta \to 0$ so that $\theta^{-1} 1^\top \alpha(\eta) \to c \in \mathbb{R}_{++}$, then

$$a = \frac{1}{\theta} \alpha(\eta) \to \frac{c}{N} 1.$$
Outline

Introduction

Model

First Main Result: Generalized Mutual Fund Theorem

Second Main Result: Decomposition Theorem

Special Cases: One for Two Mutual Funds

Another Special Case: Factor Model

Conclusion
Special Case: One Mutual Fund

Proposition

If there is a \(\lambda \in [0, 1] \) such that \(\Sigma_M = \lambda \Sigma_X \), then

\[
\alpha(\eta) = \frac{1}{1 + \lambda \eta} \Sigma_X^{-1} (\mu_M - R1)
\]

for every \(\eta > -1 \).

Corollary

For every \(n \geq 1 \), if \(\alpha_n(\eta) > 0 \) for some \(\eta \), then \(\alpha_n(\eta) \downarrow 0 \) as \(\eta \uparrow \infty \).
Proposition

If there is a \(\lambda \in (0, 1] \) such that \(\lambda \Sigma_X - \Sigma_M \) is positive semidefinite and rank \(\Sigma_M + \text{rank} (\lambda \Sigma_X - \Sigma_M) = N \), then there are a \(v_1 \) and a \(v_2 \) such that

\[
\alpha(\eta) = v_1 + \frac{1}{1 + \lambda \eta} v_2.
\]

for every \(\eta > -1 \).

Corollary (Generalization of Proposition 8 of MMR)

Suppose in addition that there are an \(L < N \) and a \(\hat{\Sigma}_M \in S^L_+ \) such that

\[
\Sigma_M = \begin{pmatrix} 0 & 0 \\ 0 & \hat{\Sigma}_M \end{pmatrix},
\]

then, for every \(n > L \), if \(\alpha_n(\eta) > 0 \) for some \(\eta \), then \(\alpha_n(\eta) \downarrow 0 \) as \(\eta \uparrow \infty \).
Outline

Introduction

Model

First Main Result: Generalized Mutual Fund Theorem

Second Main Result: Decomposition Theorem

Special Cases: One for Two Mutual Funds

Another Special Case: Factor Model

Conclusion
Factor Model

Let $L < N$ and

$$X = \beta^\top Y + Z,$$

where $\beta \in \mathbb{R}^{L \times N}$ and

$$
\begin{pmatrix}
 G \\
 Y \\
 H \\
Z
\end{pmatrix}
\sim
\mathcal{N}
\begin{pmatrix}
 \begin{pmatrix}
 \mu_G \\
 \mu_G \\
 \mu_H \\
 \mu_H
 \end{pmatrix},
 \begin{pmatrix}
 \Sigma_G & \Sigma_G & \Sigma_{GH} & \Sigma_{GH} \\
 \Sigma_G & \Sigma_Y & \Sigma_{GH} & 0 \\
 \Sigma_{HG} & \Sigma_{HG} & \Sigma_H & \Sigma_H \\
 \Sigma_{HG} & 0 & \Sigma_H & \Sigma_Z
 \end{pmatrix}
\end{pmatrix}.
$$

Then,

$$
\begin{pmatrix}
 Y \\
Z
\end{pmatrix}
\mid
\begin{pmatrix}
 G \\
 H
\end{pmatrix}
\sim
\mathcal{N}
\begin{pmatrix}
 \begin{pmatrix}
 G \\
 H
 \end{pmatrix},
 \begin{pmatrix}
 \Sigma_Y - \Sigma_G & -\Sigma_{GH} \\
 -\Sigma_{HG} & \Sigma_Z - \Sigma_H
 \end{pmatrix}
\end{pmatrix}.
$$

If $\text{rank}\beta = L$ and $\mathbb{R}^N = \text{Ker} \beta + \text{Ker} \Sigma_Z$, then there is a nice way to characterize $\alpha(0) = \nu_1 + \nu_2$.
Optimal Portfolios in the Factor Model

We further assume that

$$\beta = \begin{pmatrix} I_L & \hat{\beta} \end{pmatrix} \quad \text{and} \quad \Sigma_Z = \begin{pmatrix} 0 & 0 \\ 0 & \hat{\Sigma}_Z \end{pmatrix}. $$

- If Σ_G is positive definite and $\Sigma_H = 0$, then

$$v_1 = \begin{pmatrix} -\hat{\beta} \hat{\Sigma}^{-1}_Z \left(R\hat{\beta}^\top 1_L - R 1_{N-L} \right) \\ \hat{\Sigma}_Z^{-1} \left(R\hat{\beta}^\top 1_L - R 1_{N-L} \right) \end{pmatrix} \quad \text{and} \quad v_2 = \begin{pmatrix} \Sigma_Y^{-1} (\mu_Y - R 1_L) \\ 0 \end{pmatrix}. $$

- If $\Sigma_G = 0$ and Σ_M is positive definite, then

$$v_1 = \begin{pmatrix} \Sigma_Y^{-1} (\mu_Y - R 1_L) \\ 0 \end{pmatrix} \quad \text{and} \quad v_2 = \begin{pmatrix} -\hat{\beta} \hat{\Sigma}^{-1}_Z \left(R\hat{\beta}^\top 1_L - R 1_{N-L} \right) \\ \hat{\Sigma}_Z^{-1} \left(R\hat{\beta}^\top 1_L - R 1_{N-L} \right) \end{pmatrix}. $$
Outline

Introduction

Model

First Main Result: Generalized Mutual Fund Theorem

Second Main Result: Decomposition Theorem

Special Cases: One for Two Mutual Funds

Another Special Case: Factor Model

Conclusion
Conclusion

- Studied the CARA-Normal setup with ambiguity.
- Provided a generalized mutual fund theorem.
- Decomposed each optimal portfolio into two parts: as the investor becomes unboundedly ambiguity averse, the first part remains but the second part vanishes.
- Should accommodate CRRA utility functions and dynamic trading, as in Ju and Miao (2012, *Econometrica*).
- Should extend the Bayesian portfolio analysis, as in Avramov and Zhou (2010, *Annual Review of Financial Economics*), and the principal component analysis to the case with ambiguity.